数据挖掘 概念与技术(原书第3版)中文完整PDF_数据库教程

资源名称:数据挖掘 概念与技术(原书第3版)中文完整PDF

第1章 引论
1.1 为什么进行数据挖掘
1.1.1 迈向信息时代
1.1.2 数据挖掘是信息技术的进化
1.2 什么是数据挖掘
1.3 可以挖掘什么类型的数据
1.3.1 数据库数据
1.3.2 数据仓库
1.3.3 事务数据
1.3.4 其他类型的数据
1.4 可以挖掘什么类型的模式
1.4.1 类/概念描述:特征化与区分
1.4.2 挖掘频繁模式、关联和相关性
1.4.3 用于预测分析的分类与回归
1.4.4 聚类分析
1.4.5 离群点分析
1.4.6 所有模式都是有趣的吗
1.5 使用什么技术
1.5.1 统计学
1.5.2 机器学习
1.5.3 数据库系统与数据仓库
1.5.4 信息检索
1.6 面向什么类型的应用
1.6.1 商务智能
1.6.2 Web搜索引擎
1.7 数据挖掘的主要问题
1.7.1 挖掘方法
1.7.2 用户界面
1.7.3 有效性和可伸缩性
1.7.4 数据库类型的多样性
1.7.5 数据挖掘与社会
1.8 小结
1.9 习题
1.10 文献注释
第2章 认识数据
2.1 数据对象与属性类型
2.1.1 什么是属性
2.1.2 标称属性
2.1.3 二元属性
2.1.4 序数属性
2.1.5 数值属性
2.1.6 离散属性与连续属性
2.2 数据的基本统计描述
2.2.1 中心趋势度量:均值、中位数和众数
2.2.2 度量数据散布:极差、四分位数、方差、标准差和四分位数极差
2.2.3 数据的基本统计描述的图形显示
2.3 数据可视化
2.3.1 基于像素的可视化技术
2.3.2 几何投影可视化技术
2.3.3 基于图符的可视化技术
2.3.4 层次可视化技术
2.3.5 可视化复杂对象和关系
2.4 度量数据的相似性和相异性
2.4.1 数据矩阵与相异性矩阵
2.4.2 标称属性的邻近性度量
2.4.3 二元属性的邻近性度量
2.4.4 数值属性的相异性:闵可夫斯基距离
2.4.5 序数属性的邻近性度量
2.4.6 混合类型属性的相异性
2.4.7 余弦相似性
2.5 小结
2.6 习题
2.7 文献注释
第3章 数据预处理
3.1 数据预处理:概述
3.1.1 数据质量:为什么要对数据预处理
3.1.2 数据预处理的主要任务

…….

资源截图:

image.png


智研优享资源 » 数据挖掘 概念与技术(原书第3版)中文完整PDF_数据库教程

发表回复

提供最优质的资源集合

立即查看 了解详情